Protective effect of Bax ablation against cell loss in the retinal ganglion layer induced by optic nerve crush in transgenic mice.
نویسندگان
چکیده
BACKGROUND Bax expression is a prerequisite for retinal ganglion cell (RGC) apoptosis. Experimental studies have reported Bax protein upregulation following optic nerve transection. The stimuli that trigger apoptosis share a common executioner proteolysis cascade, including caspase-3 and poly-(adenosine diphosphate ribose) polymerase cleavage. This study sought to elucidate the role of the mitochondrial apoptotic pathway in RGCs using a Bax transgenic knockout mouse model. METHODS The right optic nerves of 26 C57BL mice, 7 Bax, 7 Bax, and 12 Bax, were subjected to crush injury and analyzed for apoptosis and neuronal cell loss on days 1, 3, and 21. Levels of Bax, Bcl-2, and caspase-3 messenger RNA expression were determined with real-time polymerase chain reaction. RESULTS Multiple apoptotic cells were detected in the retinas of the Bax and Bax mice at days 1 and 3, but not in the Bax mice. The Bax/Bcl-2 ratio was higher in the Bax than in the Bax mice on day 1 (1.33 and 0.83, respectively), with a trend toward an increase on day 3 (1.47 and 1.66, respectively); Bax/Bcl-X showed the same elevation on day 1 in the wild-type mice (1.34) but decreased on day 3 (0.8). Bax gene expression was undetectable in the Bax mice. Caspase-3 gene expression was higher in the Bax than in the Bax mice on day 1 and dropped toward baseline on day 3. The opposite trend was noted in the Bax mice. CONCLUSION The lack of apoptosis combined with the reduction in proapoptotic genes in the Bax mice after injury compared to the Bax and Bax mice suggests that Bax plays a crucial role in the induction of apoptosis. Suppression of Bax expression may reduce retinal cell loss.
منابع مشابه
Accelerated retinal ganglion cell death in mice deficient in the Sigma-1 receptor
PURPOSE The sigma-1 receptor (σR1), a ligand-operated chaperone, has been inferred to be neuroprotective in previous studies using σR1 ligands. The σR1 specificity of the protective function, however, has yet to be firmly established, due to the existence of non-σR1 targets of the ligands. Here, we used the σR1-knockout mouse (Sigmar1(-/-)) to demonstrate unambiguously the role of the σR1 in pr...
متن کاملNeural Stem Cell-based Intraocular Administration of Pigment Epithelium-derived Factor Promotes Retinal Ganglion Cell Survival and Axon Regeneration after Optic Nerve Crush Injury in Rat: An Experimental Study
Background: Pigment epithelium-derived factor (PEDF) is regarded as a multifunctional protein possessing neurotrophic and neuroprotective properties. PEDF has a very short half-life, and it would require multiple injections to maintain a therapeutically relevant level without a delivery system. However, multiple injections are prone to cause local damage or infection. To overcome this, we chose...
متن کاملBilberry extract administration prevents retinal ganglion cell death in mice via the regulation of chaperone molecules under conditions of endoplasmic reticulum stress
PURPOSE To investigate the effect of bilberry extract anthocyanins on retinal ganglion cell (RGC) survival after optic nerve crush. Additionally, to determine details of the mechanism of the neuroprotective effect of bilberry extract anthocyanins and the involvement of endoplasmic reticulum stress suppression in the mouse retina. MATERIALS AND METHODS Anthocyanins in bilberry extract (100 mg/...
متن کاملSusceptibility to Neurodegeneration in a Glaucoma Is Modified by Bax Gene Dosage
In glaucoma, harmful intraocular pressure often contributes to retinal ganglion cell death. It is not clear, however, if intraocular pressure directly insults the retinal ganglion cell axon, the soma, or both. The pathways that mediate pressure-induced retinal ganglion cell death are poorly defined, and no molecules are known to be required. DBA/2J mice deficient in the proapoptotic molecule BC...
متن کاملProtection by an Oral Disubstituted Hydroxylamine Derivative against Loss of Retinal Ganglion Cell Differentiation following Optic Nerve Crush
Thy-1 is a cell surface protein that is expressed during the differentiation of retinal ganglion cells (RGCs). Optic nerve injury induces progressive loss in the number of RGCs expressing Thy-1. The rate of this loss is fastest during the first week after optic nerve injury and slower in subsequent weeks. This study was undertaken to determine whether oral treatment with a water-soluble N-hydro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neuro-ophthalmology : the official journal of the North American Neuro-Ophthalmology Society
دوره 31 4 شماره
صفحات -
تاریخ انتشار 2011